Prostate biopsy tracking with deformation estimation
نویسندگان
چکیده
Transrectal biopsies under 2D ultrasound (US) control are the current clinical standard for prostate cancer diagnosis. The isoechogenic nature of prostate carcinoma makes it necessary to sample the gland systematically, resulting in a low sensitivity. Also, it is difficult for the clinician to follow the sampling protocol accurately under 2D US control and the exact anatomical location of the biopsy cores is unknown after the intervention. Tracking systems for prostate biopsies make it possible to generate biopsy distribution maps for intra- and post-interventional quality control and 3D visualisation of histological results for diagnosis and treatment planning. They can also guide the clinician toward non-ultrasound targets. In this paper, a volume-swept 3D US based tracking system for fast and accurate estimation of prostate tissue motion is proposed. The entirely image-based system solves the patient motion problem with an a priori model of rectal probe kinematics. Prostate deformations are estimated with elastic registration to maximize accuracy. The system is robust with only 17 registration failures out of 786 (2%) biopsy volumes acquired from 47 patients during biopsy sessions. Accuracy was evaluated to 0.76±0.52 mm using manually segmented fiducials on 687 registered volumes stemming from 40 patients. A clinical protocol for assisted biopsy acquisition was designed and implemented as a biopsy assistance system, which allows to overcome the draw-backs of the standard biopsy procedure.
منابع مشابه
Prostate Biopsy Assistance System with Gland Deformation Estimation for Enhanced Precision
Computer-assisted prostate biopsies became a very active research area during the last years. Prostate tracking makes it possible to overcome several drawbacks of the current standard transrectal ultrasound (TRUS) biopsy procedure, namely the insufficient targeting accuracy which may lead to a biopsy distribution of poor quality, the very approximate knowledge about the actual location of the s...
متن کاملA 3d Ultrasound-based Tracking System for Prostate Biopsy Distribution Quality Insurance
In this chapter we first discuss the clinical context of this work: the anatomy and the function of the prostate are introduced, followed by a brief overview on prostate cancer and prostatic cancer distribution, and also the current standard approaches in diagnosis and therapy. Crucial for the understanding of this work is the discussion on prostate motion and deformation that occur during ther...
متن کاملPatient-specific Deformation Modelling via Elastography: Application to Image-guided Prostate Interventions
Image-guided prostate interventions often require the registration of preoperative magnetic resonance (MR) images to real-time transrectal ultrasound (TRUS) images to provide high-quality guidance. One of the main challenges for registering MR images to TRUS images is how to estimate the TRUS-probe-induced prostate deformation that occurs during TRUS imaging. The combined statistical and biomec...
متن کاملNon-rigid MRI-TRUS registration in targeted prostate biopsy
A non-rigid registration method is presented for the alignment of pre-procedural magnetic resonance (MR) images with delineated suspicious regions to intra-procedural 3D transrectal ultrasound (TRUS) images in TRUSguided prostate biopsy. In the first step, 3D MR and TRUS images are aligned rigidly using six pairs of manually identified approximate matching points on the boundary of the prostate...
متن کاملMRI-Guided Prostate Motion Tracking using Multislice-to-Volume Registration
MRI-guided prostate needle biopsy requires compensation for organ motion between target planning and needle placement. Two questions are studied and answered in this work: is rigid registration sufficient in tracking the targets with a maximum error of 3 mm (smaller than average prostate tumor size) and how many intra-operative slices are required to obtain this accuracy? We developed rigid and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical image analysis
دوره 16 3 شماره
صفحات -
تاریخ انتشار 2012